
J. Fluid Mech. (2004), vol. 517, pp. 281–308. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004000977 Printed in the United Kingdom

281

Stratified turbulence dominated
by vortical motion

By MICHAEL L. WAITE AND PETER BARTELLO
McGill University, 805 rue Sherbrooke ouest, Montréal, QC H3A 2K6, Canada
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We present numerical simulations of stably stratified, vortically forced turbulence
at a wide range of Froude numbers. Large-scale vortical forcing was chosen to
represent geophysical vortices which break down at small scales where Coriolis effects
are weak. The resulting vortical energy spectra are much steeper in the horizontal
direction and shallower in the vertical than typical observations in the atmosphere
and ocean, as noted in previous studies. We interpret these spectra in terms of the
vertical decoupling which emerges in the strongly stratified limit. We show that this
decoupling breaks down at a vertical scale of U/N , where N is the Brunt–Väisälä
frequency and U is a characteristic horizontal velocity, confirming previous scaling
arguments. The transfer of vortical energy to wave energy is most efficient at this
vertical scale; vertical spectra of wave energy are correspondingly peaked at small
scales, as observed in past work. The equilibrium statistical mechanics of the inviscid
unforced truncated problem qualitatively predicts the nature of the forced–dissipative
solutions, and confirms the lack of an inverse cascade of vortical energy.

1. Introduction
Stable stratification is ubiquitous in geophysical and astrophysical fluids (for reviews

see Hopfinger 1987; Riley & Lelong 2000). Stratification inhibits vertical velocity,
causing the collapse of isotropic turbulence into layered, quasi-horizontal motion with
strong vertical variability. Internal gravity waves are superimposed on this layered
flow, which is described as the vortical or ‘pancake’ component of the turbulence.
In the atmosphere and ocean, stratification and rotation are both important at large
scales, and the flow is predominantly vortical (quasi-geostrophic). As one moves
downscale into the atmospheric mesoscale and oceanic submesoscale, Coriolis effects
weaken and stratification dominates. In this study, we examine the breakdown of
vortical motion in stratified turbulence in the absence of rotation.

In the atmospheric mesoscale and the oceanic submesoscale, vortical motion has
been observed to coexist with internal waves (see Cho, Newell & Barrick 1999 for
the atmosphere, and Polzin et al. 2003 for the ocean). Significant progress has been
made on the problem of weakly nonlinear internal waves, which emerge in the limit
of strong stratification (e.g. McComas & Müller 1981; Müller et al. 1986; Caillol &
Zeitlin 2000). However, the study of internal waves has so far tended to neglect the
effects of vortical motion. This neglect is problematic, since Lelong & Riley (1991)
showed that vortical motion can affect wave evolution in two ways: by facilitating the
transfer of energy between waves, and by exchanging energy with the wave field (see
also Godeferd & Cambon 1994; Bartello 1995; Babin et al. 1997; Embid & Majda
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1998). Vortical motion coexists with and modifies the wave field, and so a thorough
understanding of its dynamics is necessary.

Compared with internal waves, much less progress has been made on the problem
of vortical motion. In the limit of strong stratification, vortical motion is governed
by a reduced set of equations, which describe layers of horizontal, non-divergent and
fully nonlinear motion coupled only by viscosity (Riley, Metcalfe & Weissman 1981;
Lilly 1983; Babin et al. 1997; Embid & Majda 1998). Similarities between the reduced
equations and two-dimensional turbulence have provoked speculation that stratified
turbulence might support an inverse cascade of energy as in two dimensions (Gage
1979; Lilly 1983). However, attempts to generate an inverse cascade in numerical
simulations of stratified turbulence have been unsuccessful, probably due to the
strong dissipation between layers, and a loss of vortical energy into internal waves
and small-scale turbulence (Herring & Métais 1989; Métais et al. 1996). Godeferd &
Cambon (1994) used the eddy-damped quasi-normal Markovian (EDQNM) closure
to show that the vortical mode dynamics act to transfer energy in spectral space
towards the vertical wavenumber axis, corresponding to strong layering. Both layering
and flat pancake-shaped vortices have been observed in numerical simulations (e.g.
Herring & Métais 1989; Kimura & Herring 1996; Godeferd & Staquet 2003; Riley &
deBruynKops 2003) as well as laboratory experiments (e.g. Thoroddsen & Atta 1992;
Fincham, Maxworthy & Spedding 1996; Billant & Chomaz 2000). The layering of
vortical motion generates vertical shear which, if sufficiently strong, causes the flow
to break down into overturning density surfaces and small-scale turbulence. The
overturning scale (the largest vertical scale at which overturning occurs) thus sets the
thickness of the layers. The dynamical distinction between vortical and wave motion
is lost at and below the overturning scale.

Observations in the atmosphere and ocean have motivated a number of theories of
stratified turbulence. In the atmospheric mesoscale, horizontal wavenumber spectra
are frequently found to have the form k

−5/3
h for length scales of O(1)–O(1000) km

(Nastrom & Gage 1985). Vertical wavenumber spectra of the form k−3
z are often

reported (Smith, Fritts & Van Zandt 1987). In fact, deviations from these ‘universal’
forms are commonly observed: horizontal spectral slopes near −3 for scales smaller
than a few kilometres (Bacmeister et al. 1996), and vertical spectral slopes between −2
and −3 (e.g. Nastrom, Van Zandt & Warnock 1997). In the ocean, vertical wave-
number spectra vary as k−2

z at scales larger than 10 m, steepening to k−3
z at smaller

scales and then shallowing to k−5/3
z at even smaller scales (e.g. Gargett et al. 1981).

Early theories for these spectra were based on dimensional analysis. Bolgiano (1959)
took the dissipation rate of mean-squared buoyancy fluctuations as an important
parameter, and derived an isotropic energy spectrum proportional to k−11/5. Lumley
(1964) modified Kolmogorov’s (1941) theory by accounting for the drain of kinetic
to potential energy, and derived an isotropic spectrum of the form E(k) ∼ N 2 k−3 for
k � kb, where kb is the buoyancy or Ozmidov wavenumber

kb =

(
N 3

ε

)1/2

, (1.1)

ε is the kinetic energy dissipation rate and N is the Brunt–Väisälä frequency. This
theory predicts a transition to a Kolmogorov inertial range with E(k) ∼ ε2/3k−5/3 when
k � kb. The ratio of kb to the Kolmogorov wavenumber

kd =
( ε

ν3

)1/4

(1.2)
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(ν is the kinematic viscosity) determines whether small-scale isotropic turbulence
occurs. Observations in the ocean indicate a well-resolved Kolmogorov inertial range
between kb and kd when kd/kb � 1000 (Gargett, Osborn & Nasmyth 1984). On
the other hand, laboratory experiments by Fincham et al. (1996) and numerical
simulations by Godeferd & Staquet (2003) had smaller values of kb/kd and anisotropic
motion at the dissipation scale.

Early attempts to explain the atmospheric mesoscale spectrum highlighted the
distinction between vortical and wave motion. Gage (1979) and Lilly (1983) suggested
that the k

−5/3
h spectrum might be due to an inverse cascade of vortical energy, while

others including Dewan (1979) and Van Zandt (1982) argued that it could result
from a forward cascade of internal wave energy. The observed vertical wavenumber
spectrum in the atmosphere, on the other hand, is generally attributed to internal
wave dynamics rather than vortical motion. Vertically propagating gravity waves grow
in amplitude with height and ‘saturate’ when the growth is balanced by breaking
and dissipation. Different saturation mechanisms, including convective and shear
instabilities (Dewan & Good 1986; Smith et al. 1987) and Doppler spreading of small
waves by large waves (Hines 1996), imply a vertical wavenumber spectrum with a tail
of the form

Ez(kz) ∼ N2k−3
z , (1.3)

the so-called ‘saturation spectrum’. The attribution of the observed vertical spectrum
to wave processes raises the question of what spectrum is generated by vortical
motion. The wave saturation theories, for obvious reasons, should not apply to flows
dominated by vortical motion. Nevertheless, there seems to be a certain degree of
anticipation in the literature that such flows should produce a spectrum of the form
k−3

z (e.g. Herring & Métais 1989; Billant & Chomaz 2001).
In addition to its spectrum, a key question about the vortical component of motion

is how its vertical scale varies with stratification. Billant & Chomaz (2001) showed
that in the limit of strong stratification, the inviscid Boussinesq equations are self-
similar with respect to the variable zN/U , suggesting a characteristic vertical length
scale of U/N , where U is a horizontal velocity scale and z is the vertical coordinate.
The implication is that the vertical Froude number Frz remains O(1) even as the
horizontal Froude number Frh goes to zero, where

Frz =
U

NLz

, F rh =
U

NLh

, (1.4a, b)

and Lz and Lh are vertical and horizontal length scales. Like Dewan & Good (1986),
Billant & Chomaz (2001) further assumed their scaling to hold at every vertical scale,
identifying Lz ∼ 1/kz and letting U 2 ∼ E(kz) kz, from which the spectrum (1.3) follows.
This is the only argument of which we are aware that predicts (1.3) for stratified
turbulence dominated by vortical motion. Previous studies have suggested that U/N

(with U defined as the root mean square (r.m.s.) horizontal velocity) is the vertical
scale separating large-scale weakly nonlinear internal waves from small-scale strongly
nonlinear waves and stratified turbulence (Munk 1981; Hines 1996).

Numerical simulations of stratified turbulence have had mixed success in
reproducing the observed spectra. In flows dominated by vortical motion, spectra
have been found to be steeper than −5/3 in the horizontal direction, and shallower
than −3 in the vertical. Laval, McWilliams & Dubrulle (2003) found steep kh spectra
(with slopes near −5) and very shallow kz spectra when large-scale vortical energy
was forced. Wave energy, which was not forced directly, was peaked at small scales.
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On the other hand, Riley & deBruynKops (2003) and Lindborg (2003, personal
communication) found kh spectra consistent with a slope of −5/3. Lindborg (personal
communication, 2003) also noted very shallow kz spectra with sufficiently strong
stratification. Simulations of internal wave breaking have had greater success in
reproducing the observed N2k−3

z spectrum (Bouruet-Aubertot, Sommeria & Staquet
1996; Carnevale, Briscolini & Orlandi 2001). These studies of wave breaking confirmed
the earlier results of Ramsden & Holloway (1992), who found a positive buoyancy
flux (corresponding to the transfer of kinetic to potential energy, or restratification)
at small scales, contrary to the premise of Lumley’s (1964) theory.

In forced simulations of stratified turbulence in a periodic domain, a slow transfer
of energy into the horizontally averaged flow (modes with kh = 0) has been observed
(Smith & Waleffe 2002; Laval et al. 2003). These modes are not permitted in domains
with sidewalls such as the oceans; the question of whether their growth represents an
under-resolved transfer to large but finite scales is still open. The mechanism of the
transfer is thought to be either off-resonant or higher-order resonant interactions, since
resonant triads cannot move energy into modes with kh = 0 (Smith & Waleffe 2002).
The long time scale of the growth makes it difficult to define statistical stationarity in
forced simulations. Indeed, a choice must be made: run the simulations until the kh = 0
energy saturates (can be prohibitively long); stop the simulations before significant
growth occurs (can be too short to be useful); or finally, run the simulations for an
intermediate duration, on the assumption that the systematic growth does not affect
other quantities of interest. We have opted for the third choice.

In the work presented here, we use numerical simulations to study stratified
turbulence dominated by vortical motion. We have chosen to perform forced
simulations, which allow for the averaging of quantities at statistical stationarity,
where a constant Froude number can be maintained. Some of the questions we
have attempted to answer are: Do such flows produce spectra which are consistent
with observations? At what scale does vortical motion break down into overturning?
How effectively is wave energy generated by vortical motion? We have examined a
wide range of stratifications, varying Frh between O(1) and O(10−2). The paper is
organized as follows. In § 2, we recall the governing equations for a stably stratified
fluid, as well as the normal mode decomposition of the flow into vortical and wave
parts. In § 3, we examine the statistical mechanical equilibrium for truncated, inviscid
stratified turbulence, and comment on the implications for the forced–dissipative
problem and a possible inverse cascade of vortical energy. Section 4 contains the
results of our simulations of stratified turbulence subject to large-scale forcing of
vortical motion. We first consider a simulation of the reduced equations of strongly
stratified turbulence, and then discuss our simulations of the full equations of motion
at different stratifications. Conclusions are given in § 5.

2. Governing equations and normal mode decomposition
The three-dimensional equations of motion for a stably stratified fluid subject to

the Boussinesq approximation are

∂u
∂t

+ u · ∇u = −∇p + b′ ẑ + F + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Db(b

′). (2.1c)
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In (2.1), u = ux̂ + v ŷ + w ẑ is the velocity; b′ is the buoyancy, given by either gθ ′/θ0

or −gρ ′/ρ0, where θ ′ and ρ ′ are potential temperature and density perturbations; θ0

and ρ0 are constant reference values; and p is the dynamic pressure divided by ρ0.
The Brunt–Väisälä frequency N is assumed to be constant. Du and Db are dissipation
operators of velocity and buoyancy, and F is a velocity forcing function. We will make
frequent use of Fourier-transformed variables in this paper, denoting the transform
of a quantity q(x, t) by q̂k(t), where k = (kx, ky, kz). Horizontal and three-dimensional
wavenumbers are given by kh = (k2

x + k2
y)

1/2 and k = (k2
x + k2

y + k2
z )

1/2. All variables are

assumed to be triply periodic in a domain of size L3.
Vortical and wave motions can be distinguished by their time scales as well as by

potential vorticity (PV). The vortical time scale Tv = Lh/U is traditionally given by
the horizontal shear of the horizontal flow, while the wave time scale Tw ∼ 1/σk is
defined by the dispersion relation

σk =
Nkh

k
. (2.2)

The ratio of time scales Tw/Tv is equal to Frh for the fastest waves. Nevertheless,
even when Frh � 1 there are low-frequency wave modes near the kz-axis with periods
close to the vortical time scale. In terms of PV, we follow Lelong & Riley (1991) and
define the vortical part of the velocity to be that which contributes to the PV, while
the wave part is defined to have no PV. For the Boussinesq equations, the PV is given
by Π/ρ0, where

Π = ω · (N2 ẑ + ∇b′), (2.3)

and ω = ∇ × u. When F = 0 and Db = Du = 0, Π satisfies

dΠ

dt
= 0 (2.4)

(e.g. Pedlosky 1987). From (2.4), it is clear that for an inviscid unforced flow, vortical
motion cannot be generated if none is present initially. Waves, on the other hand,
can be created by vortical motion without violating PV conservation (e.g. Herring &
Métais 1989; Lelong & Riley 1991; Bartello 1995).

In the absence of overturning, Π can be inverted for the vortical component of
the flow (Staquet & Riley 1989). More commonly, a linear decomposition such as
Craya–Herring (e.g. Herring 1974) or linear normal modes (Godeferd & Cambon
1994; Bartello 1995) is used. We employ the linear normal mode decomposition
of (2.1), which we will briefly review. Following Bartello (1995), the Fourier-
transformed variables (ûk, b̂k) can be decomposed into three orthogonal components
with amplitudes (B (+)

k , B
(−)
k , B

(0)
k ) satisfying

∂B
(j )
k

∂t
+ iλ(j )

k B
(j )
k =

∑
k= p+q

∑
r,s=±,0

Γ
jrs

k pqB
r
pB

s
q . (2.5)

In (2.5), j is 0 or ±, where j = ± correspond to two internal wave modes with
frequencies λ

(±)
k = ±σk , while j = 0 corresponds to a vortical mode with λ

(0)
k = 0. The

Γ are the interaction coefficients. Velocity and temperature disturbances with kh =0
have zero frequency and no PV, so the wave/vortical mode decomposition does not
apply to them. The total energy is therefore composed of vortical, wave and kh =0
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contributions, i.e. E = E(0) + E(±) + E(S) where

E(0) =
1

2

∑
kh �=0

∣∣B (0)
k

∣∣2, (2.6a)

E(±) =
1

2

∑
kh �=0

∣∣B (+)
k

∣∣2 +
∣∣B (−)

k

∣∣2, (2.6b)

E(S) =
1

2

∑
kh=0

|ûk|2 + |v̂k|2 + |b̂k|2/N2. (2.6c)

We denote the kh = 0 energy with an ‘S’ for shear, keeping in mind that horizontally
averaged temperature as well as velocity are included (unlike Smith & Waleffe
2002).

Nonlinear interactions can be classified according to the number of vortical and
wave modes in a wavevector triad. The various classes of interactions are discussed
in detail by Lelong & Riley (1991), Godeferd & Cambon (1994), Bartello (1995),
Babin et al. (1997) and Embid & Majda (1998). For now we simply recall that the
approximate triad-wise conservation of Π 2 implies that only (±, 0, 0) interactions (i.e.
those involving one wave mode and two vortical modes) can exchange energy between
vortical and wave motion. In the strongly stratified limit, nonlinear interactions are
dominated by resonant interactions satisfying

k = p + q, λk = λp + λq . (2.7a, b)

The (±, 0, 0) interactions are never resonant, yet for small wave frequencies, near-
resonant exchanges are possible. The (±, ±, 0) interactions, by contrast, are easy to
resonate. Conservation of Π 2 requires that the single vortical mode act as a catalyst,
remaining unchanged as energy moves between the two wave modes.

The linear normal mode decomposition reduces to the PV decomposition when the
PV is approximately linear in u and b, i.e. when Π ≈ Π1 where

Π = Π1 + Π2, (2.8)

and

Π1 = N2ωz, Π2 = ω · ∇b′. (2.9a, b)

For vortical motion, scale analysis suggests that this approximation is reasonable
when Fr z � 1. Π2 can be shown to scale as max(WB0/L

2
h, UB0/LhLz) where w ∼ W

and b ∼ B0. Using the fact that (2.1b) implies W � ULz/Lh, along with the assumption
(reasonable for stratified turbulence) that Lz/Lh � 1, one can show that Π2 � UB0/LH .
Following Riley et al. (1981), we scale Π1 by N2U/Lh and B0 by U 2/Lz. The ratio of
Π2 to Π1 is then

Π2

Π1

∼ Fr2
z, (2.10)

and so Π1 is a good approximation to Π when Fr z � 1. The results of Billant &
Chomaz (2001) suggest that this condition is never met, as Frz is always O(1). We
anticipate, however, that Π1 will approximate Π at scales larger than U/N ; at smaller
scales, the linear normal modes have no physical interpretation in terms of either
time scales or PV.
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3. Inviscid unforced truncated dynamics
Inviscid unforced truncated stratified turbulence can be studied as a problem of

equilibrium statistical mechanics. This approach, though limited (real turbulence is
far from equilibrium) has proven useful in the past, for example by accounting
for the forward energy cascade in three-dimensional turbulence and the inverse
energy cascade in two-dimensional turbulence (for a review see Holloway 1986). The
Boussinesq equations (2.1) with F = 0 and Du = Db = 0, truncated cylindrically to a
finite number of Fourier modes with kh, |kz| � kT , have one exact invariant: the total
energy E. Equilibrium statistical mechanics predicts a macrocanonical probability
density function (p.d.f.) of the form

P = C exp(−αE), (3.1)

where α and C are constants depending on E. Ensemble-averaged modal energy
spectra computed with (3.1) are 〈∣∣B (j )

k

∣∣2〉 = 1/α, (3.2)

where j is 0 or ± and 〈·〉 denotes an ensemble average. Energy is equipartioned
among the modes, a well-known result for three-dimensional turbulence (Lee 1952).
Equipartition implies that 〈E(±)〉 =2〈E(0)〉 and 〈EK〉 =2〈EP 〉, where EK and EP are
the kinetic and potential energy

EK =
1

2

∑
k

|ûk|2 + |v̂k|2 + |ŵk|2, EP =
1

2

∑
k

|b̂k|2/N2. (3.3a, b)

The untruncated Boussinesq equations are further constrained by the Lagrangian
conservation of PV, which generates an infinite number of invariants [G(Π )] where G

is an analytic function and [·] denotes a spatial average. While none of these invariants
survive the spectral truncation, there is an approximate invariant as (u, b) → 0 (Warn
1986; Bartello 1995). In this limit,

G(Π ) ∼ G(0) + G′(0)Π + 1
2
G′′(0)Π2 + O(Π3), (3.4)

which upon averaging and retaining only terms up to quadratic order in (u, b) re-
duces to

[G(Π )] ∼ G(0) + 1
2
G′′(0)

[
Π2

1

]
(3.5)

(since [Π1] = 0) where Π1 is given in (2.9a). Since G(0) is constant, there is a second
quadratic invariant in the limit of ‘weak’ flow given by

V = 1
2

[
Π 2

1

]
= 1

2

∑
k

N2k2
h

∣∣B (0)
k

∣∣2. (3.6)

V is proportional to the quadratic part of the potential enstrophy [Π 2/ρ2
o ], which as

we have seen approximates the full potential enstrophy (invariant when kT → ∞) well
when Frz � 1. Nevertheless, we expect the finite truncation to ultimately destroy the
conservation of V .

Assuming that V is exactly conserved, the macrocanonical p.d.f. becomes

P = C exp(−αE − βV ) (3.7)

= C exp

(
− 1

2

∑
k

α
(∣∣B (+)

k

∣∣2 +
∣∣B (−)

k

∣∣2) +
(
α + βk2

hN
2
)∣∣B (0)

k

∣∣2) , (3.8)
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yielding modal spectra of vortical and wave energy of the form

〈∣∣B (0)
k

∣∣2〉 =
1

λ1 + λ2 k2
h

,
〈∣∣B (+)

k

∣∣2 +
∣∣B (−)

k

∣∣2〉 =
2

λ1

. (3.9a, b)

The coefficients λ1 = α and λ2 = βN2 depend on E and V . Consider the horizontal
and vertical wavenumber spectra of vortical and wave energy, defined as

E
(j )
h

(
khi

)
=

1

2

∑
k′∈Ih(khi

)

∣∣B (j )
k′

∣∣2, E(j )
z

(
kzi

)
=

1

2

∑
k′∈Iz(kzi

)

∣∣B (j )
k′

∣∣2, (3.10a, b)

where j is 0 or ±,

Ih

(
khi

)
= {k′ | khi

− δ/2 � k′
h < khi

+ δ/2}, (3.11a)

Iz

(
kzi

)
= {k′ | kzi

− δ/2 � |k′
z| < kzi

+ δ/2, kh �= 0}, (3.11b)

and δ =2π/L. For L → ∞, the modal spectra (3.9) yield horizontal spectra

〈
E

(0)
h (kh)

〉
=

2πkT kh

λ1 + λ2 k2
h

,
〈
E

(±)
h (kh)

〉
=

4πkT kh

λ1

. (3.12a,b)

The vertical wavenumber spectra E(0)
z (kz) and E(±)

z (kz) are independent of kz. The

vortical energy spectrum E
(0)
h (kh) has a maximum at

kp =

(
λ1

λ2

)1/2

, (3.13)

provided that λ2 > 0 (see below). These spectra point to an inhibited transfer of
vortical energy to large kh and an efficient transfer to large kz. Wave energy, on the
other hand, is transferred efficiently to small vertical and horizontal scales. In all of the
above, we have neglected the contribution of the kh = 0 modes. It is straightforward
to show that E(S) is equipartioned along the kz-axis.

Kraichnan (1967, 1975) used equilibrium statistical mechanics to derive the
existence of an inverse energy cascade in two-dimensional turbulence. Given the
close resemblance of V to the enstrophy in two dimensions, it is worthwhile to
reconsider his argument and apply it to stratified turbulence (see Warn 1986, for the
shallow-water equations). Let ki characterize the initial conditions, defining k2

i to be
the ratio of enstrophy to energy. The two-dimensional equilibrium energy spectrum
has the same form as (3.12a), and when ki � kT the peak in the spectrum occurs at

kp ∼ kT exp
(
−k2

T

/
2k2

i

)
. (3.14)

Therefore, kp → 0 as kT → ∞, suggesting an inverse cascade of energy in two-
dimensional turbulence.

Stratified turbulence is very different. Integrating (3.9) over all k, E and V take the
form

E = E(0) + E(±) =
πkT

λ2

log

(
1 +

λ2

λ1

k2
T

)
+

2πk3
T

λ1

, (3.15a)

V =
N 2πkT

λ2

(
k2

T − λ1

λ2

log

(
1 +

λ2

λ1

k2
T

))
. (3.15b)
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As in two dimensions, we use the invariants to define a characteristic wavenumber,
letting

ki =

(
V

N2E

)1/2

. (3.16)

Dividing (3.15b) by (3.15a) and defining X = λ2k
2
i /λ1, we have

k2
i

k2
T

(1 + X) log

(
1 +

k2
T

k2
i

X

)
= X(1 − 2X). (3.17)

When ki � kT , the non-trivial solution to (3.17) is X ∼ 1/2, yielding λ1 ∼ 2λ2k
2
i . In this

limit, we can simplify (3.15) and show that

λ1 ∼ 2πk3
T

E
, λ2 ∼ πN2k3

T

V
, (3.18a, b)

implying that the maximum vortical energy occurs at kp ∼
√

2ki . The spectrum is
peaked at a finite kh as kT → ∞, a conclusion which is analogous to Warn’s (1986)
result for shallow water. Rather than cascading upscale, vortical energy is transferred
to forward-cascading wave energy in significant quantities. The spectral peak in kh

remains unchanged.
These predictions for the inviscid unforced truncated dynamics can be tested by

integrating (2.1) with F = 0 and Du = Db = 0. We have performed a computation with
a pseudo-spectral code at a low resolution of 323, with L =2π and N = 8. Leapfrog
time stepping was employed along with a Robert filter with parameter 0.0005 to
control the computational mode (Asselin 1972). Aliasing errors were eliminated by
truncating cylindrically at kT = 10. Initial energy was peaked around kh = 3 and kz = 0,
and was 90% vortical. Froude numbers, computed as

Frh =

√[
ω2

z

]
N

, Fr z =

√[
ω2

x + ω2
y

]/
2

N
, (3.19a, b)

had initial values of Frh =0.1 and Frz =0.05.
V varies by approximately 100% over the course of the simulation, and the

equilibrium (3.9) is not attained (smaller Froude numbers yield similar results when
time is rescaled). Instead, the system evolves to the energy equipartition spectrum
(3.2), as shown in figure 1. Nevertheless, an intermediate equilibrium appears to be
reached, based on the approximate conservation of E(0), E(±) and V . We compute the
‘decoupled’ equilibrium assuming these three invariants, yielding the spectra〈∣∣B (0)

k

∣∣2〉 =
1

λ3 + λ2 k2
h

,
〈∣∣B (+)

k

∣∣2 +
∣∣B (−)

k

∣∣2〉 = 2/λ1, (3.20a, b)

where λ1 depends on E(±), while λ2 and λ3 depend on E(0) and V (see Bartello 1995, for
the rotating stratified case). If the system relaxes to (3.20) on a shorter time scale than
that of the variations in E(0), E(±) and V , we should find spectra which are close to
(3.20) defined by instantaneous values of the ‘invariants’. Indeed, this is exactly what
we observe. In figure 2 we plot the computed kh spectra along with the instantaneous
decoupled equilibrium at three different times; the agreement in each case is quite
good. The kh = 0 modes were excluded from the computation because the time scale
of their growth is much larger than the other time scales of the problem. Because the
turbulence seems to relax to this ‘instantaneous equilibrium’ over a relatively short
time scale, it would appear to have relevance to the non-equilibrium forced-dissipative
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Figure 1. (a) Time series of vortical and wave energy over the course of the inviscid simulation,
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Figure 2. The horizontal wavenumber spectra of vortical and wave energy of the decoupled
equilibrium (3.20) (‘DE’) and simulation (‘S’) at t = 50 (left), t = 300 (middle) and t =600
(right).

problem. The inviscid analysis suggests that large-scale vortical motion leaks energy
into forward-cascading internal waves, while the remaining vortical motion preserves
its horizontal scale and develops small scales in the vertical.

4. Forced–dissipative simulations
4.1. Numerical approach

Keeping in mind the nature of the inviscid dynamics, we now consider stratified tur-
bulence with forcing and dissipation. The Boussinesq equations (2.1) were integrated
on a cubic domain with L =2π. Rather than using a small-aspect-ratio domain like
Laval et al. (2003), we have chosen to let the flow determine the aspect ratio. As
in the inviscid simulation, the pseudo-spectral method was employed along with
the leapfrog time-stepping scheme and a Robert filter parameter of 0.004. Because
of the long integration times required to reach statistical stationarity, simulations
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were spun up at a modest resolution of 903 and then continued at 1803. The
resolution was increased once all the 903 runs had reached stationarity. Aliasing
errors were eliminated by truncating cylindrically, with kT = 29 at 903 and 59 at
1803. Cylindrical hyperviscosity and hyperdiffusion were used for the dissipation
operators:

Du = νh(−1)n+1∇2n
h + νz(−1)n+1

(
∂

∂z

)2n

, (4.1a)

Db = κh(−1)n+1∇2n
h + κz(−1)n+1

(
∂

∂z

)2n

. (4.1b)

We take νh = νz = κh = κz ≡ ν. A value of n> 1 artificially compresses the dissipation
range, allowing for a longer inertial range. We use n= 4, as in Bartello, Métais &
Lesieur (1996). Hyperviscosity modifies the definition of the dissipation wavenumber,
which becomes

kd =
( ε

ν3

)1/(6n−2)

. (4.2)

Forcing was employed in order to attain statistical stationarity, which allows the
straightforward analysis of the dependence of various quantities on Froude numbers.
The velocity forcing function F was restricted to vertically uniform vortical motion,
with

F̂ j (k, t) =

{
A(kh)Gj (k, t), kz = 0
0, kz �= 0,

(4.3)

where j is x or y and F̂ z = 0. Gx(k, t) and Gy(k, t) are Gaussian random processes
with zero mean satisfying kxGx +kyGy = 0. The forcing amplitude A(kh) is a quadratic
function of kh centred at the forcing wavenumber kf , given by

A(kh) =

{
a(kf + 1 − kh)(kh − kf + 1), kf − 1 � kh � kf + 1
0, |kh − kf | > 1.

(4.4)

A small amount of random seed energy ensured that vertical structure would emerge
spontaneously. Gx(k, t) and Gy(k, t) are uncorrelated in k and have a decorrelation
time scale of around 25�t . Our forcing follows that of Herring & Métais (1989),
although the horizontal length scales differ. Herring & Métais (1989) forced at small
horizontal scales to allow for a possible inverse cascade of energy. We have chosen
to force at large scales (kf = 3) to maximize the spectral range between kf and
kd , since our interest is in the three-dimensionalization of large-scale geophysical
vortices.

A set of ten simulations was performed, covering the range of Brunt–Väisälä
frequencies 1/4 � N � 32 corresponding to 10−2 <Frh < 10. We chose this range
so that the lowest stratification would have Frh > 1 and the strongest stratification
would suppress all overturning. Identical values of a, � t and ν were used for each
N , with a = 0.09, � t = 0.004, and ν = 1.90 × 10−11 at low resolution and 1.18 × 10−13

at high resolution. The Kolmogorov wavenumber kd is approximately 43 at high
resolution.

4.2. Simulation of the reduced equations

Before presenting these numerical simulations, it is worth examining the limiting
behaviour of vortical mode dynamics. We follow Embid & Majda (1998) who, having
averaged the Boussinesq equations over the wave time scale to remove the wave part
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Figure 3. Time-averaged horizontal and vertical wavenumber energy spectra from a
simulation of the reduced equations (4.6) subjected to the forcing and dissipation described
in § 4.1. The spectra were averaged at statistical stationarity over several nonlinear turnover
times.

of u and b, decomposed the horizontal velocity into a horizontally uniform (kh = 0)
and vortical component

uh = V h(z, t) + ẑ × ∇hψ, (4.5)

where ψ is the stream function for the vortical motion. The reduced equations for
vortical motion, valid for Frh, Fr z → 0, are (neglecting forcing and dissipation)

∂ζ

∂t
+ uh · ∇hζ = 0, (4.6a)

∂b′

∂t
= 0, (4.6b)

∂V h

∂t
= 0, (4.6c)

where ζ = ∇2
hψ is the vertical vorticity and w = 0. The limiting dynamics consist of

decoupled layers of horizontal flow which satisfy the equations for two-dimensional
turbulence at every level. The velocity V h(z, t) decouples from the rest of the flow,
implying that the growth rate of E(S) should go to zero as Frh, Fr z → 0.

We have performed a simulation of the reduced system (4.6) with V h = 0, following
the approach described in § 4.1. The resulting vertical spectrum of energy is
approximately flat, while the horizontal spectrum is steep (with a slope near −5) out
to the dissipation range (figure 3). The emergence of a flat vertical spectrum follows
immediately from the interpretation of the limiting dynamics as decoupled layers of
horizontal flow. By ‘decoupled’, we mean that the velocity correlation at two points
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for N = 1, 2, 4, 8, 16 and 32.

goes rapidly to zero as the vertical separation between the points increases. Assume
that

〈ui(x, t)ui(x + r, t)〉 = C(rh, t) exp(−|r3|/l), (4.7)

where r = (r1, r2, r3) is the separation between the two points, rh = (r1, r2), l is the
correlation length, 〈·〉 denotes an ensemble average (in practice, a time average), and
statistical homogeneity is assumed. The modal kinetic energy spectrum is defined as
the Fourier transform of (4.7) (e.g. Lesieur 1997), which reduces to

U (k, t) =
1

(2π)3
2l

1 + (lkz)2

∫ ∫
C(rh, t) exp(−ikh · rh) drh (4.8)

as L → ∞. U (k, t) is approximately independent of kz when kz � 1/l. The vertical
wavenumber spectrum (obtained by integrating U (k) over kh) is therefore independent
of kz at scales larger than the correlation length, a direct result of the vertical
decoupling.

4.3. Simulations of the full equations

Returning to the full Boussinesq equations, time series of vortical and wave energy
are shown in figure 4. The vortical energy grows rapidly at first and, until around
t = 20, the simulations evolve nearly identically. The forced flow during this interval
is approximately two-dimensional, so there is minimal energy dissipation. Vertical
gradients eventually emerge and dissipation balances the forcing on a time scale
which increases with N . The initial exponential growth rate of wave energy appears
to be independent of N , which was also noted by Herring & Métais (1989). A jump
in the wave energy is visible at t =100, when the resolution was increased from 903

to 1803. This jump suggests that a significant amount of wave energy is present at
small scales.

The simulations were run to t = 180, and a number of quantities were output over
the stationary range of 130 � t � 180 at an interval of �tout = 0.25. All statistics were
averaged over this interval. The vortical energy spectrum was used to define vertical
and horizontal turnover times as

τz =
2π

kzU
, τh =

2π

khU
, (4.9a, b)
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N τz τh Fr z Frh kb N τz τh Fr z Frh kb

1/4 19 6.4 6.2 5.8 3.5 3 4.5 8.3 0.65 0.33 150
1/2 15 6.5 3.0 2.7 11 4 3.4 8.8 0.55 0.21 220
1 11 7.1 1.5 1.3 31 8 2.1 10 0.34 0.072 590

3/2 8.4 7.4 1.1 0.79 55 16 1.5 10 0.20 0.034 1600
2 6.8 7.6 0.85 0.57 83 32 1.2 9.8 0.12 0.018 4200

Table 1. Nonlinear turnover times, Froude numbers and buoyancy wavenumbers for all of
the runs, based on time averages over 130 � t � 180.

where

kz =




∫
k1/2

z E(0)
z (kz) dkz∫

E(0)
z (kz) dkz




2

, kh =




∫
k

1/2
h E

(0)
h (kh) dkh∫

E
(0)
h (kh) dkh




2

, (4.10a, b)

U =
(
2 E(0)

)1/2
, (4.11)

and E(0) is the time-averaged vortical energy. The definition of kz and kh is non-
standard, and will be explained in greater detail below. The length of the averaging
interval 130 � t � 180 expressed in terms of τh and τz depends on N , and varies
from 3τz to 41τz and 5τh to 8τh. Table 1 gives τ values for each of the runs. Froude
numbers as defined in (3.19) are also given; Frz varies between 0.12 and 6.2, while
Frh varies between 0.018 and 5.8. Despite the prediction of Billant & Chomaz (2001)
(supported by the simulations of Godeferd & Staquet 2003) that Fr z ∼ O(1) for all N ,
we find that Fr z decreases monotonically with N , although it does so less rapidly than
Frh. The horizontal and vertical Froude numbers vary differently with N because
Lz, unlike Lh, collapses as N increases. Below we will see that when U and Lz

are measured separately, rather than together in the r.m.s. horizontal vorticity, our
simulations are more consistent with the Billant & Chomaz (2001) scaling, at least at
moderate stratifications. At finite Reynolds number Re, Lz is bounded below by the
Kolmogorov length scale; in this case, both Frh and Frz → 0 as N → ∞. The effect of
finite Re is not accounted for by Billant & Chomaz (2001). The Reynolds number in
our simulations, defined as Re = (kd/kh)

4/3, varies between 30 (for N = 1/4) and 100
(for N = 32).

Snapshots of vorticity for N = 1, 4 and 16 are shown in figure 5. When N =1,
Frh and Fr z ∼ O(1) and the turbulence appears to be approximately isotropic. When
N = 4, the effects of the stratification are visible: we see strong layering in the vertical
plane, with overturning at small scales. In the horizontal plane, large-scale vortical
motion is evident, although small-scale eddies associated with overturning are also
present. When N = 16, no overturning is visible, and the horizontal profile of ωz

resembles two-dimensional turbulence. In fact, no overturning occurs at any time
during the N = 16 simulation, which can be seen by examining the p.d.f. of local
Richardson number

Ri (x, t) =
N2 + ∂b′/∂z

ω2
x + ω2

y

, (4.12)

in figure 6 (see Métais & Lesieur 1992, for a discussion of the p.d.f. of the related
quantity ∂b′/∂z). In all cases, the p.d.f. drops off rapidly for negative values of Ri ,
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(a) (b)

(c) (d)

(e) ( f )

Figure 5. Vertical slices (x, z) of ωy (left column) and horizontal slices (x, y) of ωz (right
column) for (a, b) N = 1, (c, d) N = 4 and (e, f ) N = 16 at t =180.

which result from overturning density surfaces. As N is increased from 8 to 16,
overturning is completely suppressed by stratification and dissipation. This regime is
not particularly relevant to atmosphere and ocean dynamics, although it is the limit
represented by the reduced equations at finite Re.
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4.3.1. Integrated quantities

In figure 7 we plot the time-averaged vortical and wave energies as functions of
Frh and Fr z. As the Froude numbers go to zero below Frh = 0.3, the vortical energy
increases while the wave energy drops. At weaker stratifications, the wave energy is
approximately independent of Frh and Frz, while the vortical energy grows marginally
as they increase. Presumably, this growth will stop at larger Froude numbers. It is
important to recall that at the relatively weak stratifications of Frh, Fr z � 1, the
decomposition of energy into vortical and wave contributions has no real physical
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potential energy in E(S) plotted against Frh at t = 180.

significance. Note that the two plots in figure 7 are qualitatively the same; in what
follows, we will plot integrated quantities against Frh only.

The kh = 0 energy E(S) grows slowly for the duration of our simulations, with a
growth rate that depends on N (figure 8a). In figure 8(b), we plot the kinetic and
potential energy of the kh = 0 modes. The potential energy decreases as Frh is reduced
below 1, where it is at least an order of magnitude smaller than the kinetic energy.
The kinetic energy increases as Frh decreases down to 0.07, but it drops significantly
at stronger stratifications. This drop is not surprising, given that the horizontally
averaged horizontal momentum equations,

∂u

∂t
= − ∂

∂z
uw + Duu, (4.13a)

∂v

∂t
= − ∂

∂z
vw + Duv, (4.13b)

imply that vertical velocity is required to transfer energy into the kh = 0 modes. In
our simulations, vertical velocity is generated by transfers into internal waves and
overturning. The drop in kh = 0 kinetic energy for Frh < 0.07 is consistent with the
suppression of overturning and the corresponding reduction in wave energy. The fact
that Smith & Waleffe (2002) did not observe such a drop may be because they forced
vertical velocity directly, or it may be that their stratifications were not sufficiently
strong. Our results agree with the prediction that the kh = 0 modes decouple from the
rest of the flow in the limit of strong stratification (Embid & Majda 1998).

4.3.2. Energy spectra

Spectra of wave energy (for a subset of the runs) are shown in figure 9(a, b). The
horizontal spectra (figure 9a) steepen as N increases, with spectral slopes varying
between −1 and nearly −6. Unlike Laval et al. (2003), there are no significant bumps
at large kh in our spectra, probably because of our lower horizontal resolution
(necessary for an isotropic computational domain) and more conservative choice of
ν. The vertical spectra (figure 9b) are peaked at a wavenumber which increases with
stratification. For the largest N , this peak occurs near kd and the spectrum has positive
slope out to the dissipation range, as in Laval et al. (2003). These results suggest
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Figure 9. Horizontal and vertical wavenumber spectra of wave energy (a) E
(±)
h (kh), (b)

E
(±)
z (kz), and vortical energy (c) E

(0)
h (kh), and (d) E

(0)
z (kz) for N =1, 2, 4, 8, 16 and 32 as

well as for the reduced equations. Note that in (d), the spectra have been offset from one
another by factors of 10 for clarity. The reduced equations spectrum is unshifted.

that the nonlinear transfer of vortical energy to wave energy occurs at a decreasing
vertical scale as N increases. Because of the existence of overturning in some of our
simulations, part of this wave energy may in fact be small-scale turbulence projecting
onto the linear wave modes.

The vortical energy spectra are displayed in figure 9(c, d). For N � 2, the kh

spectra (figure 9c) are nearly identical, with slopes slightly shallower than −5/3. As N

increases beyond 2, the spectra steepen, and appear to saturate at large N with a slope
of −5. Indeed, those for N =16 and N = 32 are indistinguishable from the spectrum
of the reduced equations. Similar spectra were obtained by Laval et al. (2003). The
vertical spectra (figure 9d) are approximately flat at low kz; these wavenumbers
correspond to vertical scales decoupled from one another by the stable stratification.
At larger wavenumbers, the decoupling is broken by overturning and dissipation, and
the spectra have a non-zero slope. As N increases, the flat range extends to larger kz

while the negative slope range narrows and steepens (see also figure 10, which gives
the kz spectra of vortical energy for all runs with N � 4). For N = 1–2, the slope
is around −2; at larger N , the range is too narrow to identify a slope. Our results
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imply that when overturning is suppressed, the vortical spectra take the form k−5
h

and k0
z , and the dynamics are represented well by the reduced equations. Recall that

the equilibrium statistical mechanics also predicts a flat vertical spectrum due to the
equipartition of energy in kz.

The anisotropy of the turbulence can be illustrated by the joint kh–kz spectra
E

(0)
hz (kh, kz) and E

(±)
hz (kh, kz), which are plotted for three different stratifications in

figure 11. The lack of dependence of the vortical spectrum on kz can be seen to
extend to larger kz as N increases. The wave spectrum displays a maximum which, as
N increases, moves in towards the kz-axis and out towards large kz. This region of the
kh–kz plane is associated with the low frequencies of the internal wave dispersion
relation, and is exactly where we expect the exchange between vortical and wave
modes via the (±, 0, 0) interaction to be the least off-resonant. At the largest
wavenumbers, the spectra are influenced by the cylindrical dissipation operator.
However, the anisotropy at small wavenumbers appears to be a robust feature at
large N . To verify this point, we have performed an additional simulation at N =16
with spherical truncation and dissipation. The dissipation range is modified by the
change in Du and Db, but the form of the vortical spectrum at large scales is unchanged
(not shown).

4.3.3. Energy dissipation and transfer

Consider next the energy dissipation rate, decomposed into contributions from the
vertical and horizontal dissipation of vortical and wave energy. One can show that

ε(j )
r = 2νr

∫ kT

0

k2n
r E(j )

r (kr ) dkr, (4.14)
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Figure 11. Contours of log E
(0)
hz (kh, kz) (left) and log E

(±)
hz (kh, kz) (right) for (a, b) N = 1, (c, d)

N = 4 and (e, f ) N = 16. The kh and kz coordinates range logarithmically from 1 to 59, and
the contour interval in each case is 0.5. Note that since the contours are plotted in the
log(kh)–log(kz) plane, isotropic fields appear boxy rather than circular, with box corners at 45◦

from the axes. Anisotropy is manifested in rectangular boxes, as in (e).

where r is h or z and j is 0 or ±, is the dissipation rate of j -energy in the
r-direction. We plot the ε against Frh in figure 12. When the stratification is weak, the
dissipation is nearly isotropic. As the stratification is increased and the horizontal
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of vortical and wave energy, as functions of Frh.

energy spectra steepen, the horizontal dissipation decreases and is overtaken by
the vertical dissipation, as in Fincham et al. (1996), when Frh < 0.6. Overturning
and small-scale turbulence, the mechanisms by which structures of small horizontal
scale dissipate energy, are suppressed with increasing stratification. In addition, the
dissipation of vortical energy exceeds that of wave energy as Frh decreases below
0.07. At these strong stratifications, no overturning occurs, and energy is dissipated
from the layered vortical motion directly by the vertical derivatives of (4.1).

The vortical and wave spectral energy transfer functions are defined by

T (j )(k) = 2 Re
∑

k= p+q

Γ
jrs

k pqB
(j )
k

∗
B (r)

p B (s)
q , (4.15)

where j is 0 or ±, ∗ denotes complex conjugate, and the r and s are summed over
± and 0. Positive T (j )(k) denotes a net injection of ‘j ’-energy into k by nonlinear
interactions. To get a clearer picture of the exchange of wave and vortical energy, we
decompose the transfer into contributions from the various classes of triads:

T (j )(k) = T (j,0,0)(k) + T (j,±,±)(k) + T (j,±,0)(k), (4.16)

where j is 0 or ±. For example, T (±,0,0)(k) represents the transfer of wave energy due
to triads of one wave mode and two vortical modes; T (0,±,0)(k) represents the transfer
of vortical energy due to the same class of triads. As we saw above in (2.10) and
(3.6), V is increasingly a quadratic invariant (conserved triad-wise) as Frz → 0; since
only vortical modes contribute to V in this limit, it follows that (0, ±, ±) interactions
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the various classes of triads. The wave (top) and vortical (bottom) transfer spectra are given
for N = 4 (left) and N = 16 (right). Note that the (±, ±, ±), (±, ±, 0), and (0, 0, 0) transfers
sum to zero independently when the kz = 0 contribution (not shown) is accounted for. The
transfer is multiplied by kz so that area is preserved with log-linear coordinates.

cannot modify the vortical mode without violating the conservation of V , and so
T (0,±,±) → 0. Furthermore, off-resonant interactions are suppressed, implying that
T (0,±,0)(k) and T (±,0,0)(k) → 0. However, it is the near-resonant triads (of two vortical
modes and a low-frequency wave) that exchange energy between vortical and wave
modes. In figure 13, we plot the decomposition of the transfer in kz for N = 4 and
N = 16. When N = 4, the injection of vortical energy into the wave energy spectrum
T (±,0,0)

z has a maximum near kz ∼ 20 (figure 13a) and kh = 3 (not shown), and so the
wave modes involved have low frequencies, as expected. The injected wave energy is
swept downscale by the three-wave (±, ±, ±) interaction, and to a lesser extent by the
catalytic (±, ±, 0) interaction, possibly in the form of wave-breaking and small-scale
turbulence. The drain of large-scale vortical energy into wave energy by the (±, 0, 0)
interaction represents the ‘wave drag’ and is a reason why an inverse cascade of
vortical energy does not occur in stratified turbulence. When N = 16 (figure 13b),
wave energy is injected near kd . A small amount of wave energy is sent downscale
by the (±, ±, 0) and (±, ±, ±) interactions. As Frh and Frz → 0, interactions collapse
onto the resonant set, which is larger for (±, ±, 0) triads than for (±, ±, ±) triads. In
this limit, catalytic interactions dominate over triple-wave interactions, which is the
case in figure 13(b).

The total vortical energy transfer is approximately zero between the forcing at kz = 0
and the dissipation, implying a well-resolved inertial range (figure 13c, d). When N = 4
(figure 13c), the downscale transfer of vortical energy is dominated by (0, ±, 0) and
(0, 0, 0) interactions. When N = 16 (figure 13d), the (0, ±, 0) contribution is greatly
reduced, and the transfer of vortical energy to small vertical scales is dominated
by interactions involving three vortical modes, which trivially meet the resonance
condition. The vortical side of the catalytic interaction involving two wave modes
and a vortical mode is nearly zero everywhere when N =16, as required by the
conservation of the quadratic potential enstrophy V .
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4.3.4. Vertical length scales

The vortical and wave energy spectra have characteristic vertical length scales,
which can be compared to the scale U/N predicted by Billant & Chomaz (2001). We
define U in terms of the time-averaged vortical energy (which dominates the total
energy) as in (4.11). The vortical energy spectra of our simulations are flat out to a
wavenumber which we denote by kc, and can be modelled by

E(0)
z (kz) =

{
a, kz � kc

a(kz/kc)
−p, kz > kc,

(4.17)

where p > 1 and, integrating over kz,

a =

(
p − 1

pkc

)
E(0). (4.18)

The vortical scale is 1/kc, and is the vertical length over which velocities are correlated.
It is easy to show that kc ∼ N/U . The spectral Froude number at kz is

Fr z(kz) ≡ U (kz)kz

N
=

√
2ak3/2

z

N
, (4.19)

in the flat range, where

U (kz) =

(∫ kz

0

2E(0)
z (s) ds

)1/2

. (4.20)

Assuming that overturning destroys the vertical decoupling of the flat range, it follows
that Fr z(kc) ∼ 1. Using (4.18) to eliminate a in (4.19), we have

kc ∼
(

p

p − 1

)1/2
N√
2E(0)

=

(
p

p − 1

)1/2
N

U
. (4.21)

The end of the flat range therefore occurs near N/U .
As a means of measuring kc in our spectra, consider the nth moment of E(0)

z (kz),

k
(n)

z =




∫
kn

z E
(0)
z (kz) dkz∫

E(0)
z (kz) dkz




1/n

. (4.22)

Letting Re → ∞ and integrating between 0 and ∞ in (4.22), the spectrum (4.17) gives

k
(n)

z =

(
p − 1

(n + 1)(p − n − 1)

)1/n

kc, (4.23)

provided that n<p − 1. The usual choice of n= 1 is invalid if we are to allow for
the possibility that p =5/3. Instead, we choose (somewhat arbitrarily) n= 1/2, which
explains our definition of kz in (4.10). We have defined kh analogously.

The wave field introduces two characteristic vertical wavenumbers, corresponding
to the maximum wave energy E(±)

z (kz) and the maximum wave/vortical exchange
T (±,0,0)

z (kz), which we call kw and ke, respectively. We have computed kw and ke, with
finite difference and linear interpolation, after first smoothing the energy and transfer
spectra with a three-point running average (applied once for the energy spectra, and
between three and five times for the transfer spectra). Both kw and ke are plotted
against Frh in figure 14. In most cases, ke exceeds kw by about a factor of two. As we
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Figure 14. The vertical wavenumber of maximum wave energy E
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z (kw) and maximum

wave/vortical exchange T
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z (ke) plotted against Frh.
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Figure 15. N/U along with the characteristic wavenumbers kz (vortical) and ke (wave),
as functions of Frh
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saw in figure 13, wave energy is injected at kz ∼ ke and swept downscale and dissipated
(by small-scale turbulence when Re is large enough). This process is responsible for
the dissipation of large-scale vortical energy, and its vertical scale is the scale at
which the layered structure of stratified turbulence breaks down. We anticipate that
ke should scale like kz and U/N .

The vortical wavenumber kz, the wave wavenumber ke, and N/U are plotted
together against Frh in figure 15. The wavenumber kz scales approximately like N/U

for 0.2 <Frh < 1; it is limited by the dissipation scale at small Frh and the domain
size at large Frh. The wavenumber ke agrees well with N/U over a slightly wider
range than kz, probably because the wave energy is not directly contaminated by the
forcing. In addition, we have computed the buoyancy wavenumber kb for each of our
runs, using the total dissipation rate ε = ε

(0)
h + ε

(±)
h + ε(0)

z + ε(±)
z as defined in (4.14); kb

values are given in table 1. In most instances kb is much larger than N/U and kd;
indeed, only when N � 1 is kb < kd . Higher resolution is required to resolve both N/U

and kb when the stratification is strong. Nevertheless, our primary interest is in the
scale of the breakdown of the layered structure of stratified turbulence, which appears
to scale convincingly as U/N . The nature of the buoyancy range at wavenumbers
larger than N/U , and the transition to isotropy at kb, cannot be clearly determined
from these results.

5. Conclusions
We have presented a set of simulations of forced turbulence at various stratifications.

Our aim was to study the dynamics of turbulence dominated by the vortical
component of the flow. Large-scale vortical motion was forced for many turnover
times, until statistical stationarity was reached. A small amount of initial seed energy
guaranteed that vertical structure would emerge, and with it, internal waves and
(in most instances) overturning. Ten stratifications were considered, covering a wide
range of Froude numbers. Our weakest stratification had horizontal Froude number
Frh = 6, while our two strongest stratifications suppressed all overturning. As in other
recent studies of forced stratified turbulence (Smith & Waleffe 2002; Laval et al.
2003), we observed a slow growth in the kinetic energy of the horizontally averaged
velocity. The growth rate dropped rapidly in the strongly stratified limit when all
overturning was suppressed.

The main results of our forced–dissipative simulations can be summarized as
follows. For weak stratification, the vertical spectra of vortical energy resemble k−5/3

z .
As the stratification is increased, a flat range emerges at low wavenumbers. The flat
range is a consequence of the vertical decoupling, and its length was shown to scale
as N/U , the characteristic scale of Billant & Chomaz (2001). Overturning motion
accounts for the non-zero slope beyond, which appears to steepen as N increases.
However, the details of the steepening are unclear at this resolution. Higher resolution
is necessary to simultaneously resolve the large decoupled scales and the small
isotropic scales, and to determine the length of any intermediate range with a non-zero
slope distinct from −5/3. On increasing N , the negative slope range moves out towards
kd and narrows, eventually disappearing as all overturning is suppressed. In this limit,
the vertical spectrum is flat out to the dissipation range, and the layers are coupled only
by viscosity. In the horizontal, the vortical spectra are slightly shallower than k

−5/3
h at

low and moderate stratifications, consistent with the results of Riley & deBruynKops
(2003) and Lindborg (2003, personal communication). They steepen as N increases,
saturating with a slope of approximately −5 in the absence of overturning, as in Laval
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et al. (2003). The limiting vortical spectra, i.e. flat in kz and with a slope near −5 in
kh, agree well with those obtained by integrating directly the reduced equations for
vortical motion. The inhibited transfer to small horizontal scales and efficient transfer
to small vertical scales were suggested by the statistical mechanical equilibrium, which
also confirms the absence of an inverse energy cascade in stratified turbulence.

Wave energy was not forced directly, but was generated through nonlinear
interactions with the vortical motion. In all but the most strongly stratified cases,
wave energy is injected at a vertical scale of U/N . At this scale, Fr z ∼ O(1), and so
one must be cautious in interpreting the injected wave energy; it may correspond
to strongly nonlinear stratified turbulence, rather than internal waves satisfying the
dispersion relation (2.2). The spectra of wave energy have positive slope out to this
scale, as in Laval et al. (2003). As stratification increases, the spectral peak of wave
energy moves out to large kz and small kh, where low-frequency wave modes are
located. The triadic interaction of one wave mode and two vortical modes, which is
responsible for the injection of wave energy, is the least off-resonant in this region of
the kh–kz plane.

The end of the flat range and the injection of wave energy occur at a vertical scale
which scales like U/N , agreeing with the prediction of Billant & Chomaz (2001).
In fact, U/N is the scale at which vortical motion breaks down into overturning
three-dimensional motion. For kz � N/U , the spectral Froude number Frz(kz) � 1
and layers of horizontal flow are decoupled from one another, as described by the
reduced equations. At scales near U/N , Frz ∼ O(1) and overturning occurs, while
buoyancy effects are still important. The buoyancy wavenumber kb also introduces
an important scale, below which stratification is unimportant and isotropic three-
dimensional turbulence exists. This scale was unresolved in most of our simulations.

The spectra obtained in the limit of strong stratification, despite agreeing with the
reduced equations, look nothing like the standard observations in the atmosphere
and ocean. More interesting is the nature of the turbulence below the overturning
scale, about which many questions remain. How wide is the range of length scales
between U/N and the eventual transition to isotropy? How does the turbulence in this
range compare with that generated by breaking internal waves? The wave/vortical
decomposition loses its usefulness below the overturning scale, and so it may be
more fruitful to focus on kinetic and potential energy and the buoyancy flux, as in
Ramsden & Holloway (1992). The effects of weak rotation and spatial inhomogeneity,
which are present in the real atmosphere and ocean, should also be examined.
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Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified
turbulence. J. Fluid Mech. 239, 157–194.

Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among
internal gravity waves. Rev. Geophys. 24, 493–536.

Munk, W. 1981 Internal waves and small-scale processes. In Evolution of Physical Oceanography
(ed. B. A. Warren & C. Wunsch), pp. 264–291. MIT Press.

Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra observed
by commercial aircraft. J. Atmos. Sci. 42, 950–960.

Nastrom, G. D., Van Zandt, T. E. & Warnock, J. M. 1997 Vertical wavenumber spectra of wind
and temperature from high-resolution balloon soundings over Illinois. J. Geophys. Res. 102,
6685–6701.

Pedlosky, J. 1987 Geophysical Fluid Dynamics , 2nd edn. Springer.

Polzin, K. L., Kunze, E., Toole, J. M. & Schmitt, R. W. 2003 The partition of finescale energy
into internal waves and subinertial motions. J. Phys. Oceanogr. 33, 234–248.

Ramsden, D. & Holloway, G. 1992 Energy transfers across an internal wave-vortical mode
spectrum. J. Geophys. Res. 97, 3659–3668.

Riley, J. J. & deBruynKops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy.
Phys. Fluids 15, 2047–2059.

Riley, J. J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification.
Annu. Rev. Fluid Mech. 32, 613–657.

Riley, J. J., Metcalfe, R. W. & Weissman, M. A. 1981 Direct numerical simulations of homogeneous
turbulence in density-stratified fluids. In Nonlinear Properties of Internal Waves (ed. B. J. West),
pp. 79–112. AIP.

Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified
turbulence. J. Fluid Mech. 451, 145–168.

Smith, S. A., Fritts, D. C. & Van Zandt, T. E. 1987 Evidence for a saturated spectrum of
atmospheric gravity waves. J. Atmos. Sci. 44, 1404–1410.

Staquet, C. & Riley, J. J. 1989 On the velocity field associated with potential vorticity. Dyn. Atmos.
Ocean 14, 93–123.

Thoroddsen, S. T. & Atta, C. W. V. 1992 The influence of stable stratification on small-scale
anisotropy and dissipation in turbulence. J. Geophys. Res. 97, 3647–3658.

Van Zandt, T. E. 1982 A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res.
Lett. 9, 575–578.

Warn, T. 1986 Statistical mechanical equilibria of the shallow water equations. Tellus 38A, 1–11.


